Nomination for Waters Important to Anadromous Fish Anadromous Water Catalog Volume | ECTO N. | SEWARD B-4 Name of Waterway Anadromous Water Catalog Number of Waterway _____ 224-40-14911 For Office Use Change to _____ Atlas Nomination Catalog Both Regional Supervisor Addition ____ Deletion _____ Correction Name addition: USGS name Local name Migration Rearing Spawning Date(s) Observed Species Comments: Provide any clarifying information, including number of fish observed, location of fish survey data, etc. COHO BET PARR COLLECTED WHILE ELECTRO-FISHING DURING COURSE OF ANADROMOUS FISH HABITAT SURVEYS. Attach a copy of a map showing location of mouth and upper points of each species, specific stream reaches identified for spawning or rearing, locations of barriers, such as falls. Attach a copy of the fish survey data, if available. Name of Observer (please print) ____ Rich Sinnott Signature: SFELT/333 RASPBERRY RD. NCHORAGE, AK. 99518 Signature of Area Biologist: State of Alaska Department of Fish and Game ## FISH HABITAT SURVEY FORM 8/88 | Observer(s) | RS/AW | *** | | | | | |-----------------|------------------|---------|----------------|--------|---------|-----| | | 1-B-6 | Water | shed No | | | | | | | | | | | | | Stream No. | | Stream | n Name | | | | | Date <u>5/3</u> | 86 Time 51 | 55_ T | emp: Alr | 5°€ W | ater | 200 | | Altitude | ♂′ M.S.L | U.S.G. | S. Quad | | | | | Lat | | N Lo | ng | ° | | _ w | | Weather | Cake Stream S | | Precip. | Today | _ 0 | | | Clear | 1 | | | Yester | day _O | | | Prt. Cloudy | eek | | | | | | | Cloudy | _3_ | _ | | | | | | | | | | | | | | Water Q. | Muddy | | Substrate | % | Mud | | | | Murky | | | | Sand | 20 | | | Stained | | | | Gravel | 50 | | | Clear | | | | Cobble | 30 | | | H ₂ C | Conduc | tivity 10 | s/cm | Boulder | | | Habitat Qua | lity 1 — | 5 | Spawning | 5 | Bedrock | | | | Poor E | xcell | Rearing | 3 | | | | | | | Migration | | | | | | | | —— ▼ wi | | | | | Flow: | | | ! wi | dth | 1 | | | | | 1/4 1/2 | 1/4 | | | | | | v = | | W1 2 0 | | | | | | | | | | | | | | Fish Species | | | | | | | | | | | |--|--------------|---------|------------|----------|----------|-----|---------|---------|-----------|----------|-----| | | | к | CO | S | Р | CH | DV | RB | CT | 1 | | | - | | | 56 | | | | | | | | | | | | | 53 | | | | | | | | | | | | - | 54 | | | | | | | | | | 4 - | * | E E | | | | | | | | | | | | | gth | | | | | | | | | | | | | Length | + | Gear_ | EK | | | Es | t. Area | Sample | d _50; | η . | | | e de la composición dela composición de la dela composición de la composición de la composición dela composición dela composición de la composic | | | ling Time | 38 | 1 -0- | | | | | | | | | | Sampl | ling Time | 9 | / 3 . c | Est | Sampl | ing Eff | clency_ | (-/4 | | | | | | nel Diag | | | | tream | feature | s, veget | ation, 8 | and | | | | | ription of | stream | n barrie | rs) | | | | | | | | aer | rial vi | cw | | | | | | | | | | * | | 1 | 1 | | | | | / | | | \ | | | | / | 01 | | | | | . h | 49 | ~ | (a | | | | //- | | <u></u> | | | 16 | is than |)
V=-1 | | 1 | | | 1 | , | 010 | | _ | 200 | UN | | 7 | # | 1 | | i jii saa la | | (- | A les | licopter | | | - // | | 1 | (| | | | | / | , | | | | | | | | |